DERIVATION OF THE FREQUENCY FUNCTION OF STELLAR
FLARES IN A STAR CLUSTER*

V. A. Ambartsumyan

Data on flare stars in the Pleiades indicate directly that the mean frequency
of flares differs strongly for different flare stars. The solution is found
to the problem of determining the distribution function of the mean fre-
quencies of flare stars on the basis of statistical data on all flares ob-
served in a given aggregate.. The need to do this arises because it is in
practice impossible to determine the mean flare frequency for individual
stars. The problem is solved by using the chronology of discoveries ('"first
flares'") and the chronology of confirmations (observations of '""second flares").
A concrete solution is found for the flare stars in the Pleiades. The results
obtained are far from being definitive. However, the possibility of using

the chronology of discoveries of flare stars and the chronology of confirma-
tions to obtain serious information about a cluster appears sufficiently
striking to the author for him to have wished to dedicate the present paper

to the eminent astrophysicist and physicist Professor H. Alfvén on the
occasion of his 70th birthday.

1. In astronomy, one frequently encounters situations in which certain quantities can
be measured directly and one wishes, from these directly measured quantities, to deduce the
values of other quantities or functions of more fundamental significance that are related
to the first but cannot be directly measured. Such cases frequently lead to the solution
of mathematical problems known under the general heading of "inverse problems of mathematical
physics'. Sometimes the problem can be reduced to the solution of a mathematical problem
that does not require a particularly complicated formalism.

As an example from classical astronomy, we can mention the problem solved by Gauss
of determining the elements of a planetary orbit from three observations; this problem is
the inverse of the '"direct problem" of calculating the ephemeris of a planet from the given
elements of its orbit.

A simple example from the field of stellar astronomy is the problem of determining
the spatial star density in a globular cluster as a function of the distance to the center
of the cluster from observations of the star density distribution as projected onto the
celestial sphere. It is well known that this problem reduces to the solution of an Abel
integral equation. Of course, certain assumptions are also made in the solution of this
problem, it being assumed, in particular, that deviations from a spherical distribution
can be ignored.

The problem of a globular cluster brings out rather well the statistical nature of
the problem and the difficulties related to this. The point is that the surface star den-
sity cannot be found from the observations with arbitrarily great accuracy, this last being
limited by random fluctuations. The resulting uncertainty (inaccuracy) of the given func-
tion gives rise to an even greater uncertainty in the required function (the spatial density).

A third example, in which the difficulties associated with the statistical nature of
the function obtained from observations are even more obvious, is the problem of finding
the distribution function ¢ (£, n, £) of the spatial velocities of stars from observations
of the distribution function Y(v, o, 6) of the radial velocities of stars in different parts
of the celestial sphere. This problem was posed by Eddington and solved by the present
author about 40 years ago [1].

*Dedicated to Professor H. Alfvén on the occasion of his 70th birthday.

Byurakan Astrophysical Observatory. Translated from Astrofizika, Vol. 14, No. 3, pp.
367-381, July-September, 1978. Original article submitted May 16, 1978.

0571-7132/78/1403-0209$07 .50 © 1979 Plenum Publishing Corporation 209



A fourth example is the problem of determining the total number of flare stars in a
cluster (or in a stellar association) when one knows the numbers of stars that in a definite
time interval T have been observed to have one, two, three, etc., flares each but there
Sstill remains an unknown and large number of undiscovered flare stars. This inverse prob-
lem admits a simple mathematical formulation in the case when the flares of each of the
flare stars form a homogeneous (with constant mean frequency) Foisson sequence. In this
case, when the mean flare frequency is the same for all the flare stars, it is sufficient
to know only the numbers m, and m, of stars that are observed to have one and two flares
each, respectively. Then the number m, of stars not yet observed to have flares is given
by the simple expression ,

. m?
. ' €Y

2m,

my =

Actually, the relation (1) holds only between the mathematical expectations of the
numbers m,, m, and m,. Lowever, for want of better, when calculating the mathematical
expectation of m, we usually substitute in (1), not the mathematical expectations of m,;

and m,, but their observed values during the time T.

2. However, examination of the problem reveals that in at least some star aggregates
there are stars with strongly differing mean flare frequencies [3]. The
Pleiades is such an aggregate. As a result, the use of Eq. (1) gives a rough answer suitable
only for a first approximation, and to describe the aggregate of flare stars one needs to
know not only the total number N of flare stars but also their distribution function f£(Vv)
with respect to the frequency v. Even.more complete information would be provided by these
numbers for each interval of apparent magnitude (at the light minimum). To solve this
problem exactly, one should use the direct method, i.e., one ought to observe the clusters
for so long that each of the flare stars has such a large number of flares that it is pos-
sible to estimate the mean frequency for each individual star. TFor the stellar aggregates
containing flare stars (for example, Pleiades, Orion) currently under observation by the
astronomers this is impossible, since the material collected during several years of ob-
servations still leaves undetected an appreciable number of flare stars, and the stars
that have been observed to have more than two flares constitute only a very small fraction
of all the flare stars. Thereifore, we pose the problem of statistical determination of
the total number of flare stars and their distribution with respect to the flare fre-
quencies without prior determination of the mean frequencies for each star. For the time
being, we assume that this distribution does not depend on the star’s magnitude at the
light minimum. 1In principle, the method of solution will also be suitable for finding the
same data for individual magnitude intervals.

Suppose that at time t = 0 we begin to observe the flares in the aggregate, and let
P(t) be the probability that in the interval (0, t) there is at least one flare of a flare
star chosen randomly in the aggregate. For the time being, we assume that the observations
are made continuously. This assumption is made only to simplify the arguments. We shall
see that this condition can be relaxed and the results remain valid provided the method of
measuring the time from the start t = 0 is modified.

Then P(t) can be expressed in terms of the distribution function f(v) of the Poisson
parameter v (the mean frequency of flares of the star) in the form

o0
»

P(ty=1—\ e " f(v)dv. (2)

0 . .
Obviously, NP(t) is the mathematical expectation of the number of "first'" flares that take
place up to time t, i.e., it is the mathematical expectation of the number of flare stars
discovered up to time t (it is assumed that no flare star had been discovered before t = 0).

Obviously, the derivative dP (1)

(1) = (3)

is the mathematical expectation of the number of stars that have their "first" flares (which
are observed) in unit time at time t. It follows from (2) and (3) that

210



oc

n, () = NS e "f(v) dv, 0

from which we conclude CL0
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Introducing the mean value vV of the mean flare frequency,

V= e, (5
5
we obtain
n, (8) '1]‘3 oy - :
Sl = ) eT () dv. (6)
n; (0) v 5

The left-hand side of this equation can be found from observations. Since we do not know
v in this equation, we can, inverting the Laplace transformation, find f(v) only to within
a constant factor. Since, however, £(v) is a probability density, the normalization

o

(royan =1 ™

Y

0
always enables us to determine this constant :actor.

Since every Poisson process consists of mutually independent events, we can cut out
finite intervals of the time axis and join up the remaining intervals and still have a
Poisson sequence of flares for each star provided the cutting out is made completely in-
dependently of the existing concrete realization of the process. As a result, interrup-
tions in the continuous observation made necessary by the conditions of observation (day-
light, bad weather, etc.) are unimportant. It is only necessary to take as the time
elapsed since the start t = 0 of observations the time t of the observations (the sum of
the exposures) made since t = O.

We now draw attention to the physical meaning of the left-hand side of Eq. (6). For
t near zero, all the observed flares are first flares of the corresponding stars in the
period of observation, and therefore the number “1(0) is simultaneously both the number of
all flares that occur in the aggregate and the number of all "first' flares in unit time.
On the other hand, the rate of all flares is stationary by the hypothesis that it is
a sum of Poisson processes. Therefore, nl(O) is also the number of all flares in unit
time at any time. Therefore, the leit-hand side of Eq. (6) is the relative fraction
of "first'" flares n;(t) among all flares that occur in unit time.
If t = 0 is the time when observation of the aggregate begins, then nl(t) is the number of
flare stars newly discovered in unit time. Therefore, Eq. (6) also has the following meaning:
the relative fraction of newly discovered flare stars among all stars that have flares in
unit time is equal, to within a constant factor, to the Laplace transform of the function
vE(v).

3. Suppose that to solve Eq. (6) we determine from the observational data the ratio
nl(t)/nl(O) by counting the first flares for six time intervals, i.e., we split the complete
time interval of the observations into six equal parts. Since the corresponding numbers
n,; (t) for the Pleiades have by now reached about 80C on average, the random deviations of
the observed values n. (t) from their mathematical expectations must be about 10% of the
actual value. Under such conditions, when the given function is given at only six points
and, moreover, with such low accuracy, the inversion of the Laplace transformation leads
to very large relative errors in the determination of the distribution function f(Vv).

One can however hope to improve the situation considerably by using the possibility
of indirect determination of the function nl(t) from other observational data.
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For thnis, we write down a formula for the expected number N2 of stars for which both
the first and the second flare are observed during the time t, i.e., during this time two
or more flares are observed:

N,=N S FOYI — e " — e ) dv )
5
or
N,= N, — lef(») e vtd, 9
¢
where
N,=NP(t) =N {f(v) (1 —e ") av (10)
5
It is readily seen from (9) that
d [ —u
Ng———leNt—d—;Ye £ () dv. (1)

G
And since on the basis of (10) and (7)
0.
N Sf(::) ey =N — N, (),
: .
we obtain

Ny=N,—t-2 (N—N). (12)
Since dN/dt = O, dt
N, = N, — ¢ 2, (13)
at

Regarding (13) as a differential equation for Nl’ we obtain its solution Nl(t) as a function

of the time: P
(* N, (u)du
N, () =Ct~tj N, (u)du,

2

u

0

To determine the value of the constant C, we differentiate this equation with respect to
t and remember that the derivative of the left-hand side is

(14)

n(t)y=C

_ §:N2 (Wdu  Ny(t)
. u” t

At t = 0,
ry (O) = C,

since N2(t) must be of order t2 at small t. Thus,
t
. N, .
N ({#t)=n, (0)t~—tj-—2£3;)—d—"-- (15)
u’
7]

Differentiating with respect to t and then integrating by parts, we obtain

t

n, (1) =n, (())._ LS.M
0

Since sz(t) = nz(t)dt, where nz(t) is the number of second flares observed in unit
time, we can obviously rewrite this equation in the form
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py (t) = ny (0) —g (16)
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Thus, we obtain the values of the function nl(t) in terms of the statistics of the
times of second flares, the data on which is obviously to some extent independent of the
distribution of the first flares. In addition, the values oi nl(t) are determined through
(16) by integrating the observed function n2(t), which leads to smaller relative fluctua-
tions in the values obtained for nl(t). Ye can therefore expect_this second method of
empirical determination of nl(t) to help in the more exact calculation of the left-hand
side of Eq. (6). This, in its turn, is extremely important for a more reliable determina-
tion of the solution of this equation.

4. On the basis of what we have said, we can propose the following program for deter-
mining the distribution function £(v) of the mean flare frequencies.

a) All the flares are arranged in chronological order and the '"first flares" are
separated; by direct coupting we then find the function nl(t)/nl(O), which is the fraction
of first flares among all flares as a function of the time. This time is not calendar
time but the time measured from the start of observations by a clock that runs only during
observations of the aggregate. For this, the complete duration of the observations is
divided into intervals which are sufiiciently small that in them the mathematical expecta-
tion of the change in nl(t) is small compared with nl(t) itself. For example, each interval
may be of order 30 or 50 h. In these intervals, the nl(t) counts are made.

b) The function nz(t) is found in the same way and nl(t) is found by numerical in-
tegration on the basis of Eq. (16).

Because of the instability of the problem of inverting Eq. (16) — this is what math-
ematicians call an improperly posed problem — it is desirable to use both methods of de-
termining nl(t)/nl(O) in order to obtain confirmation and also to be able to average.

c) Inverting the Laplace transformation on the basis oi Eq. (6), we find f(v) from
nl(t)/nl(O). The normalization (7) nust be used.

d) The correctness of the solution found for f(v) can then be tested on the basis of
other observational data obtained independently of nl(t)_and nz(t). For example, using the
expression for the mathematical expectation my of the numbers of stars that are observed
to have k flares during the complete time T,

R

m,= N e f(V, k'

0

dv, a7

we can, knowing f(v), determine the ratios mk/m1 and then make a comparison with the ob-
served realization of the numbers my.

5. This method was applied'to the flare stars observed in the Pleiades. We decided
to ignore all flares for which the photographically observed amplitude is less than one
magnitude. Thus, we are finding the distribution function of such "large" flares. Ve did
this in order to eliminate completely spurious flares due to random local variations of
the sensitivity on the photographic plates.

According to the data given to me by E. S. Parsamyan and based on the catalog of all
flares taken from the literature, the total number of such "large" flares is 822. The cor-
responding total observation time is 2625 h. Unfortunately, we do not know in all cases
how these hours of observation are pnlaced in time since the authors usually do not
publish the times of all photographs but only publish the times of
observed flares and the total duration of all exposures during the relevant period. A
difficulty therefore arose in determining the times of the flares in our noninal time t.

We are however justified in assuming that the flare activity was uniform during the complete
time T of the observations and moreover the published times make it possible to arrange

them in chronological sequence; it is therefore sufficient to assume that the time of the
flare in the nominal time is proportional to the number z of the flare, i.e.
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fig. 1. Dependence of nl(t)/nl(O) on z. The crosses are
the values of nl(t)/nl(O) obtained directly from observa-
tions. The smooth curve is an interpolation by hand based
on the same values (see the text). The points are the
values calculated in accordance with Eq. (16) on the basis
of the counts of '"second'" flares.

T

t =2z . (18)
z (%)
In Fig. 1, the dashed curve represents data on nl(t)/nl(O) obtained from direct counts,
while the smooth curve is an interpolation based on the same data but under the assumption
that the mathematical expectation of the fraction of first flares among all flares must

decrease monotonically with the time.

The appreciable fluctuations of the dashed curve with respect to the monotonically
decreasing curve illustrates well our earlier assertion that it is difficult to determine
the mathematical expectations of nl(t)/nl(O) on the basis of only direct counts.

Further, -on the basis of direct counts, we determined the function nz(t). Although
the function nz(t) obtained from the observations also contains large fluctuations, these
are strongly smoothed by the integration in accordance with Eq. (16). We were suprised
how well the values nl(t)/nl(O) obtained in this way and plotted in the figure in the form
of points coincided with the previously drawn interpolation curve.
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All these data can be satisfactorily described by the simple interpolation formula
n(t) 1
n (0)  (1-+0.00260 )™

It is readily seen that the solution of Eq. (6) with this analytic form of the left-
hand side must have the form

(19)

F(v) = Ce v, (20)
where the parameter s, which has the dimensions of time, is equal to
s=385h. (21

We should make two remarks concerning the obtained distribution function f(v): a) an
appreciable fraction of the flare stars has mean frequencies lower than 0.001 h'l; b)
there is a singularity at the point v = 0, as a result of which the integral over the
complete frequency interval diverges. Of course, at small v the true function must behave
differently. It is obvious that observations which have lasted for only 2625 h cannot
give any reliable information about the statistics of flares for stars for which the mean
interval between flares is greater than, say, 2500 h. For such frequencies, the expression
(20) is a purely formal result. It would therefore be equally incorrect to assume that
there are a large or a small number of such stars with low flare frequency. Ve recognize
here that the mathematical problem is improperly posed and we feel the inadequacy of the
corresponding observational data.

Particularizing, we can say that the true function must have the form

FO) = Ce v g (y), (22)

where g(v) can be taken equal to unity for large v (say for v > 0.001 h'l) and tends rapidly
to zero as v -~ 0. However, we cannot yet describe quantitatively the behavior of g(v) at
small v.

This last circumstance prevents our determining the value of C on the basis of the
normalization (7). Nevertheless, the product NC, which occurs in the expression

NCe™ v * g (v) dv (23)

for the mathematical expectation of the number of stars in the frequency interval, can be
estimated as follows.

From (4) for t = 0, we find

ny (0) = Njf(v) vdv = NC | e v "g()av. (24)
o)
0 0

Since the integral on the right-hand side of (24) also converges for g(v) = 1, by assuming
g(v) = 1 also in the part corresponding to small v we do not introduce any large error.
Integrating, we obtain under this assumption

52/'3
0) <s5ae
Substituting here s = 385 h, n; = 0.313 h™!, and I'(2/3) = 1.354, we obtain NC = 12.2.
Therefore, (23) for high frequencies has the form

NC =

dN =122 ¢ * v *? v,

where Vv must be expressed in units of hl.

This then is the expression for the absolute number of flare stars in the Pleiades
for different frequency intervals.
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TABLE 1. Calculated Numbers N(vo) TABLE 2
of Stars in the Pleiades with Mean

Flare Frequencies Greater than Vo k (74) obs M
8, n N(v) 1 213 (213)
2 62 62
5.0 ) 77 0.04 3 46 30
4.0 96 0.18 4 20 17
3.0 128 0.7 5 9 11
2.0 192 3.1 6 29 30
1.0 385 17
0.30 1280 94
0.10 3850 245
0.05 7700 - 385
0.02 19250 634
0.01 38500 886

For the total number of stars having frequency greater than some Vy» We obtain

CO

N(v) =122 S' e v gy

or, replacing v by the variable x = vs,

0
e

N (v) = 12.26' \ e x " x,
Vas
and using the value of s given by (21); we obtain

co
Il

N {v,) = 88.7 ; e s (25)
S85v,
The integral on the right-hand side can be found numerically for different values
of the parameter vy 8- We then obtain Table 1 of the N(vo) values, in which II is the mean
interval between flares at the frequency vV, €expressed in hours.

Of course, the last row of Table 1 is a crude extrapolation. Nevertheless, it is
worth drawing attention to the two following unexpected circumstances.

a) The majority of flare stars have mean interval between flares longer than 5 000 h.

b) Although the numerical value of N(vo) in the last row of Table 1 is extremely
unreliable, we must apparently assume that at least some stars have mean intervals exceeding

20 000 h.

Both of these conclusions refer to intervals between flares whose amplitude exceeds
one magnitude.

6. The obtained distribution function (20) enables us, as we said above, to use Eq.
(17) to calculate the ratios m,/my, ms/m;,... of the mathematical expectations and compare
them with the observations, which we do in Table 2. Since the value of the constant C in
Eq. (20) remains unknown because the required function is uncertain at low frequencies,
the (calculated) numbers m given in the third column of Table 2 were obtained by multiplying
the ratios mk/m1 deduced from Egs. (17) and (20) by the observed value m1 (k =2, 3,...).
It is for this reason that the value of m, in the third column is equal to the value of the
same quantity in the second column and put in brackets.

7. In the investigations of flare stars made by the Byurakan group we have always
wanted to determine the total number of all flare stars, and this requires knowledge of
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the number n, of flare stars that do not have any flares during the time of observations.
In the approximation in which it is assumed that all the flare stars have the same mean
frequency, the value of n_ was obtained from Eq. (1). But we have seen that the new values
are distributed in a fairly wide interval, and the infinite increase of f(v) in accordance
with Eq. (20) at small v mentioned above leads to a divergence of the integral (17) at

k = 0. Evidently, we must change the formulation of the problem and attempt to determine,
not the number of all flare stars, but only the number for which the frequencies exceed a
certain Vg -
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INFLUENCE OF ELECTRON SCATTERING ON THE CONTINUOUS
SPECTRUM OF A STAR

V. V. Sobolev

The photospheres of hot stars (or other astrophysical objects) in which scat-
tering of the radiation by free electrons is important are considered. The
ratio of the coefficient of electron scattering to the absorption coefficient
is assumed to be an arbitrary function of the optical depth. A linear integral
equation is obtained that directly determines the intensity of the radiation
leaving the star. This equation is solved numerically for the case of an
isothermal photosphere in which the density varies in accordance with the
barometric law. In this case, an asymptotic expression is also given for the
radiation intensity.

It is well known that the scattering of radiation on free electrons plays an important
role in the photospheres of hot stars. Such scattering is particularly important in the
photospheres of Wolf—Rayet stars. It was first investigated by Ambartsumyan [1].

Estimates show (see, for example, [2] and [3]) that electron scattering must also be
taken into account when one is considering radiative transfer in the envelopes of supernovae.

In a number of investigations ([4, 5], for example) the electron scattering mechanism
has also been invoked to explain the energy distribution in the spectra of x-ray sources.

Thus, the problem of determining the influence of electron scattering on the continuum
is encountered in the study of various astrophysical objects. Initially [6, 7], this
problem was considered under the assumption that the ratio of the coefficient of electron
scattering to the absorption coefficient does not change in the medium. Recently [3]
radiative transfer in a homogeneous sphere was investigated under this assumption. However,
the ratio in question usually depends strongly on the depth, and in [8, 9] the problem was
solved for some special cases of this dependence.

In the present paper, as in [9], we consider radiative transfer in a stellar photo-
sphere in which light is not only emitted and absorbed but is also scattered by free elec-
trons. As a result, we find the energy distribution in the continuum of the star. However,
in contrast to [9], the ratio of the electron scattering coefficient to the absorption
coefficient is taken in a different form, and the problem is solved in a different way.

Although we are concerned with stellar photospheres in this paper, its results can
also be applied to other astrophysical objects.

A. A. Zhdanov Leningrad State University. Translated from Astrofizika, Vol. 14, No. 3,
pp. 383-391, July-September, 1978. Original article submitted June 28, 1978.

0571-7132/78/1403-0217$07.50 © 1979 Plenum Publishing Corporation 217



